
カーボンニュートラルの実現に資する触媒材料、エネルギー変換材料開発へ期待
2025年7月1日
早稲田大学
科学技術振興機構(JST)
ナノ多孔体の結晶性を制御する新たな合成方法を開発 カーボンニュートラルの実現に資する触媒材料、エネルギー変換材料開発へ期待
詳細は早稲田大学HPをご覧ください。
【発表のポイント】
〇 ナノスケールの細孔をもつ金属酸化物材料は、触媒や吸着・分離材、エネルギー材料など幅広い分野で応用・研究されており、なかでも、単一の大きな結晶に無数のナノ細孔が空いている”単結晶性ナノ多孔体”は単結晶とナノ多孔体の性質を兼ね備えるユニークな材料として注目されています。
〇 本研究では、合成の難しかった金属酸化物の”単結晶性ナノ多孔体”合成のブレークスルーとなりうる技術を開発しました。細孔を形成する鋳型としてナノ多孔体を用いて、金属塩化物を染みこませて蒸気としてナノ細孔中を拡散、気相輸送させて酸化することで鋳型内での結晶成長を実現しました。
〇 作製した酸化鉄ナノ多孔体は、一般的な微結晶からなるナノ多孔体に比べて触媒活性や熱安定性が向上していることを確認しました。
早稲田大学理工学術院の松野 敬成(まつの たかみち)講師らは、酸化鉄ナノ多孔体※1 の結晶子サイズ※2を制御する新しい合成方法を開発しました。鋳型となる多孔体の内部で前駆体の塩化鉄を気相拡散※3させ、鋳型中で酸素と反応させることで結晶が成長し、”単結晶性ナノ多孔体※4”が得られることを見出しました。酸化鉄の一種であるα-Fe2O3について細孔構造・結晶子サイズを制御し、従来の微結晶からなるナノ多孔体よりもて触媒活性や熱安定性が高いことを確認しました。
本研究成果は、アメリカ化学会発行の学術誌「Chemistry of Materials」に2025年6月30日8:00 (EST)にオンライン公開されました。
論文名: Quasi-Single-Crystalline Inverse Opal α-Fe2O3 Prepared via Diffusion and Oxidation of FeCl3 Precursor in Nanospaces
【画像:https://kyodonewsprwire.jp/img/202507011472-O2-SeXjGa8H】
図 開発手法による単結晶性ナノ多孔体生成の様子
(1)これまでの研究で分かっていたこと
金属酸化物ナノ多孔体は金属酸化物由来の機能と、ナノ細孔に由来する高比表面積・大細孔容積などの特徴を併せもっており、触媒や分離・吸着材、電極、エネルギー材料など多岐にわたって応用・研究されています。組成や細孔構造などの各種パラメーターの制御は物性・特性に相関するため、その制御は重要です。これまでに界面活性剤ミセル※5やシリカ、炭素などを鋳型として細孔構造を転写することで種々の金属酸化物ナノ多孔体が合成されてきました。その細孔壁は通常、数ナノメートル(nm)~十数nm程度の微結晶で構成されますが、数百nm~数マイクロメートル(μm、100万分の1メートル)の結晶にナノ細孔が空いた”単結晶性ナノ多孔体”では粒界の少ない単結晶の特徴を併せもち、太陽電池や触媒材料として優れた性能を示すことが知られています。しかし、このような”単結晶性ナノ多孔体”の合成は一般的に困難で、水熱反応※6や低融点の金属塩の熱分解などの方法によって限られた組成のみが報告されている状況でした。
(2)新たに実現しようとしたこと、明らかになったこと、そのために新しく開発した手法
従来材料における制約は合成方法に起因するため、本研究では課題解決に向けて金属酸化物の組成・細孔構造・結晶子サイズの同時制御を実現する新しい方法を開発しました。今回は酸化鉄の一種であるα-Fe2O3に注目し、その細孔構造と結晶子サイズの同時制御を達成しました。地殻中に豊富に存在する鉄の酸化物は酸化還元触媒や電極材料などに広く用いられています。
α-Fe2O3ナノ多孔体の精密制御を実現するためには鋳型法※7が有効でした(図1)。球状シリカナノ粒子が集積した多孔体に前駆体水溶液を含浸・乾燥し、空気中で加熱することで酸化物を形成しました。その後、シリカを塩基性水溶液で溶解することで細孔構造の制御されたα-Fe2O3ナノ多孔体を得ました。
【画像:https://kyodonewsprwire.jp/img/202507011472-O3-9gg79vB0】 図1 α-Fe2O3ナノ多孔体の合成
前駆体に塩化鉄を用いたナノ多孔体は数百nm~数μm程度のサイズで、結晶方位が粒子全体で揃っていることが分かりました(図2)。一方で、これまで結晶子サイズの大きいナノ多孔体の合成に用いられてきた、融点の低い硝酸塩を用いた場合は数十nm程度の微結晶で細孔壁が構成されていました(図2)。硝酸塩は熱分解によって核形成・結晶成長が起きますが、塩化物は直接的な熱分解を起こさず酸素との反応により酸化物を形成するため、結晶性に大きな違いがみられたと考えられます。また、鋳型中で気相から塩化物が連続的に供給されることで結晶が成長したと考えられます。
【画像:https://kyodonewsprwire.jp/img/202507011472-O4-myG96dvu】 図2 α-Fe2O3ナノ多孔体の透過型電子顕微鏡像とその制限視野電子回折(SAED)パターン※8、
高速フーリエ変換(FFT)パターン※9。(左)塩化物前駆体から合成、(右)硝酸塩前駆体から合成。
単結晶性のナノ多孔体は微結晶からなる多孔体に比べて高い耐熱性を示しました。また光フェントン反応※10によるメチレンブルーの分解をモデル反応として触媒活性を比較したところ、比表面積が小さいにもかかわらず、単結晶性ナノ多孔体の方が2倍程度速く色素を分解することが分かりました。
これらの結果は単結晶性の細孔壁をもつナノ多孔体の有用性を示しています。
(3)研究の波及効果や社会的影響
従来の方法では合成可能な”単結晶性ナノ多孔体”の組成に制限がありました。本研究では、前駆体となる塩化物を外部から供給するのではなく、元々鋳型の中に含浸しておき空気中で加熱・酸化するだけで鋳型内部での原料の拡散と連続供給による結晶成長が可能であることを見出しました。このような新しいナノ多孔体の精密合成は優れた特性をもつ金属酸化物ナノ多孔体の発掘に貢献し、ナノ多孔体が用いられる幅広い分野への波及効果が期待できます。
(4)課題、今後の展望
今回の検討では鋳型中での塩化物の酸化によりα-Fe2O3の結晶子サイズの制御に成功し、一般的な微結晶からなるナノ多孔体との違いを明らかにしましたが、本手法が他の組成にどこまで適用できるかはまだ分かっていません。FeCl3以外の金属塩化物でも同様の反応過程を経て単結晶性の金属酸化物ナノ多孔体の合成が期待できるため、今後本手法で合成可能な組成を明らかにしていきます。同時に、鋳型内部における結晶成長メカニズムを明らかにし、無機合成化学の学理を深耕することも重要です。以上に加えて、応用評価を進め、カーボンニュートラルの実現に資する触媒材料、エネルギー変換材料への展開を目指します。
(5)研究者のコメント
ナノ多孔体を構成する組成・細孔構造・結晶性などのファクターと機能には密接な相関があり、設計の自由度が向上することで新しい応用展開や適用できる範囲の拡大が期待できます。所望のナノ多孔体を得るための合成化学は機能性材料を設計するうえで重要な基盤技術の1つであり、本手法によって新しい材料群の創出が期待されます。
(6)用語解説
※1 ナノ多孔体
ナノメートル(10億分の1メートル)スケールの細孔をもつ物質。通常の緻密な物質とは異なり、高比表面積・大細孔容積を有するため、その特徴を活かして触媒や吸着・分離材、エネルギー材料など幅広い用途で利用される。
※2 結晶子サイズ
結晶性材料を構成するうちの、単一とみなせる結晶の大きさ。一般的なナノ多孔体の細孔壁はナノサイズの結晶の集合体であり、大きな結晶で構成されるナノ多孔体の合成は重要な課題の1つ。
※3 気相拡散
金属塩化物は比較的高い蒸気圧をもち、単独では熱分解による酸化物の形成が起こらないため、加熱することで気体として安定な状態で拡散する。本研究では鋳型に染みこませた金属塩化物が鋳型中を気体として拡散することで連続的に前駆体が供給され、金属酸化物の結晶が成長した。
※4 単結晶性ナノ多孔体
結晶性ナノ多孔体の中でも、単一の結晶中に多数のナノ細孔をもつナノ多孔体。通常の結晶性ナノ多孔体の細孔壁は微結晶から構成されるが、細孔壁が大きな結晶からなる場合は粒界が少ないため特徴的な物性を発現する。
※5 界面活性剤ミセル
両親媒性である界面活性剤分子が自発的に集合(自己組織化)することで形成されるナノ構造体。典型的には水中でミセル形成の臨界濃度以上になったとき、親水基を外側、疎水基を内側に向けて自己組織化し、球状・ロッド状・ラメラ・3次元構造など多様な集合構造をとる。
※6 水熱反応
水と前駆体を反応容器に密閉して加熱することで高温・高圧条件下で物質を合成する方法。
※7 鋳型法
有機分子や無機粒子などの鋳型と金属酸化物との複合体を作製し、鋳型のみを除去することで鋳型の形状を反映した金属酸化物ナノ多孔体を得る方法。無機粒子としてはシリカや炭素のナノ粒子、ナノ多孔体などが用いられる。
※8 制限視野電子回折(SAED)パターン
電子線の回折により原子スケールの周期性(結晶性)を確認することができる。今回のケースではスポットが観測されており、一つの多孔体粒子の中で結晶方位が揃っており単結晶的であると分かる。
※9 高速フーリエ変換(FFT)パターン
撮影画像をFFT変換した画像。今回のケースではナノスケールの周期性を反映しており、スポットが観測されたことから球状細孔の規則的な配列が確認された。
※10 光フェントン反応
過酸化水素と鉄イオンを含む水溶液にUV光を照射することでヒドロキシラジカルを発生させ、有機物を分解する反応。本研究では鉄イオンの代わりに酸化鉄ナノ多孔体を溶液中に分散させて、メチレンブルーの分解反応を行った。
(7)論文情報
雑誌名:Chemistry of Materials
論文名:Quasi-Single-Crystalline Inverse Opal α-Fe2O3 Prepared via Diffusion and Oxidation of FeCl3 Precursor in Nanospaces
執筆者名(所属機関名):Daichi Oka, Kohei Takaoka, Atsushi Shimojima, Takamichi Matsuno* (Waseda University)
掲載日時(現地時間):2025年6月30日(月)8:00 (EST)
掲載日時(日本時間):2025年6月30日(月)21:00 (JST)
掲載URL:https://doi.org/10.1021/acs.chemmater.5c00155
DOI:10.1021/acs.chemmater.5c00155